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functions Pi, Where 

whence we obtain 

pPi =- 4;; - (Dzn sin [ai + (- 1)” A] - Dbl, cm [ai + (- i)” A]) 

The system of 2N equations pPi= 0 for the important practical case of two balls in 
each selfbalancer (N= 2) gives 16 different solutions for the positions of the balls in the 
selfbalancers, of which the only solution corresponding to the absence of oscillations of the 
system refers to the case Dzti=Dy,= 0, or 

a, - Xl = -_(az - Xl), cos (a1 - Xl) = --0,/(2&z) (5) 
a3 - xz = -(% - xz), cos (aa - ~2) = -DJ(ZmR) 

It can be seen from (5) that each selfbalancer compensates only the component of force 
F which rotates in the same direction as the corresponding SBS cage. 

The common condition that the equilibrium positions of the balls be asymptotically stable 
is that the real parts of the roots of the fourth degree equation in z /2/ 

det (aPJac+ - &z) = 0; i, k = 1, . . ., 4 (6) 

be negative. We can show by the Routh-Hurwitz method that the position of the balls given by 
(5) under the condition D,<2mR is the only stable position in the range of rotation 
frequencies defined by the criterion 

Im(&+ j2wmN'))O (7) 

which is the same as the criterion obtained in /l/ for the case of a single selfbalancer for 
extinguishing vibrations due to unbalance of a rotating rotor. 

This conclusion was checked experimentally for the elementary case of a system consisting 
of a body on an isotropic elastic suspension (Fig.2) with natural frequency of oscillation 
0,; condition (7) corresponds to the inequality w> 00. 

REFERENCES 

1. AGAFONOV YU.V., STudy of the stability of a ball selfbalancer of a rotor system on elastic 
supports, Mashinovedenie, 6, 1976. 

2. BLEKHMAN I.I., Synchronization of dynamic systems, Nauka, Moscow, 1971. 

Translated by D.E.B. 

PMM V.S.S.R.,Vol.51,No.3,pp.401-405,1987 OoZl-8928/87 $lO.OO+O.oO 
Printed in Great Britain 01988 Pergamon Press plc 

CONTROL OF THE SPECTRUM OF MULTIDIMENSIONAL OSCILLATORY OBJECTS* 

V.A. BRUSIN 

The solution is obtained in closed form of the problem of shifting in the 
complex plane any pairs by simple complex conjugate eigenvectors of the 
linear part of a controlled object by means of linear output variable 
feedbacks. 

Consider the linear controlled object described by the equations 

z'=Az+Bu, y=Cz U) 

where I is the n-dimensional state vector, y is the m-dimensional output signal vector, u 
is the r-dimensional control vector, and A,B,C are IZ x n, n X r, and m X n matricesrespect- 
ively. 

A problem in stability and control theory concerns the control of the spectrum of a 
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closed system by means of output signal vector feedback. We know /l/ that, when m--= ,I,!/- .I, 
when object (1) is completely controllable by means of linear feedback II f).~, any desired 
distribution of the spectrum of the closed system can be realized. Several algorithms have 
been devized for finding the feedback matrix D, given the desired spectrum /2, 3,'. 

The problem is more complicated when the dimensionality m of the output signal vector is 
less than the dimensionality n of the state vector, as is basically the case in applied 
problems. No complete algorithmic solution of this problem has so far been obtained. Results 
have been obtained for various special cases. For instance, in /4/ the case r= m and the 
class of proportionally integrating linear feedbacks 

t 
~=-plJJ~f+B(~)dT: 

0 

was considered (9, L are n x m and h2 are positive numbers). It was shown that, in the 
"non-singular" case, the matrix I( ean be chosen in such a way that the m ,eigenvalues of the 
greatest real part of the stable matrix A shift leftwards for all sufficiently small Pl > 0 
when proprotional feedback is connected (pp= 0). (The results on the use of integrating 
feedback are concerned with the problem of neutralizing continuous interference). The solution 
obtained by perturbation theory for linear operators is also valid for an infinite-dimensional 
state space and has the form: K= (C+B+)-‘, where C+,i?+ are the (mxm) -matrices obtained by 
projection of the matrices C,B onto the m-dimensionaleigensubspace of the matrixAcorrespond- 
ing to the eigenvalues considered. This solution exists if the matrices C+,B+ are non-singular. 

Though fairly general, this result needs strengthening. First, it is not very convenient 
from the computational point of view. There are well-known difficulties in finding the eigen- 
vectors of asynrnetric matrices. Also, even small errors in finding them can lead to serious 
errors in finding the matrix (C+B*)-I. Because of this, the solution given in /4/ cannot be 
regarded as stable to difficult kinds of errors , or to errors in finding the coefficients of 
the matrices A,B.C. Second, this solution does not describe the entire set of solutions 
having the required property. Third, the operator A is assumed in /4/ to be stable, which 
restricts the statement of the problem. 

Below, we solve the problem on the "leftwards" shift of any g simple complex-conjugate 
eigenvalues of a matrix A of any type by means oftheclass of feedbacks of the type g== -pug, 

p>o1 and describe the set of matrices K which solve the problem for any sufficiently small 

P >o. We use the method of D-splitting, /5/, so that only the characteristic polynomial of 
the matrix is taken as a basis. We basically consider the case of complex roots because this 
has a special role in problems of quenching the oscillations of multidimensional mechanical 
systems. (Consideration of the case of a zero eigenvalue has special features, due to the 
D-splitting /5/ have a singular line). Our approach can be extended to the case of distributed 
systems. 

We assume that a, or io,,a,4: io,,, . . . . a&iOq(Os>O; s== 1,. ., q) are simple eigenvalues of the 
matrix A. We consider the class of feedbacks (controllers) 

EL== --k'(P)# 

I 

‘, kji=kii(@, k<)(O)=0 (21 

(kii(p) are functions of the parameter p, differentiable at zero). We denote by 

/I 

pE -I- A 3 
D(p, K)- dct - & E 

II 
=P”+dl(K)pn-l-C...+dn(K) 

r 

the characteristic polynomial of the linear system (l), (2). 
We introduce the polynomial 

D,(P, 4 = D (P + % A? (3) 
(Here and throughout, S= I,..., g).Obviously, it has a pair of pure imaginary roots 49,. We 
form the complex function of a real variable 

L), (iw, K) = P, f&, K) + ioQ, (02, K) (4) 

where P,and Qsare polynomials in w* with real coefficients, dependent on the coefficients 

X-ii (P) of the feedback. We Taylor-expand the function P,(d, Kf, Qs(oe, K) at the point eQ= @, 
kij= 0 and denote by AP,,AQ, the linear parts of this expansion; 

(5) 
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(6) 

where the values of the derivatives are taken for ki,= 0, A&=0. 
We order the elements of the matrices k,,, klzr...,k,,, first selecting elements of the first 

row, then of the second, etc. This ordered set of elements kij(P) forms the mr-dimensional 
vector k(p). By (6)) we form the q pieces of mr-dimensional vectors 

(the elements Pilr qij are written in the same order as the components kij of the vector k). 

Theorem. Let 

rank 
II 

%dPlzJ . . pm, 
qllsQ12r . . . q,n%s II = 

2 
(7) 

(NS,b>O (8) 

Then, if k'(O)= k, a number @>O exists such that, for all p ~(O,ij), the feedback (2) 
provides a leftwards shift of the eigenvalues %*io, in the complex plane. 

If one of the scalar products (8) has a negative sign, then, for sufficiently small 
P>O, the corresponding eigenvalue will shift rightwards. 

Notes. lo. If the domain of parameters kij+ given by inequalities (8), is not empty, we 
can obviously choosetheparameters in such a way that small errors in finding the parameters 
of the controlled system do not violate (8). If upper and lower bounds of the errors are 
known, we can use (8) to make a choice of kij for which the errors cannot affect the leftwards 
shift of the eigenvalues. 

2O. Assume that we aim to shift the simple complex conjugate eigenvalues of the matrix A 
in such a way that their real parts are less than a given number --6<O. We first choose the 
eigenvalues which have the greatest real part (there may be one or more of such complex 
conjugate pairs). For the set of eigenvalues thus chosen, we use the theorem to find the 
vector k,, then the matrix K,(p) of feedbacks. Then, by increasing p, we move these eigen- 
values leftwards until the maximum value ofthereal parts of all the complex conjugate roots 
is reduced. Let p0 be the limiting value of p. If this p still does not achieve our aim, 
we proceed as follows. We put U= -K,(po)y+ z+ and consider a new linear object with the 
same output signal vector and a new control vector ~1~. For the new object we repeat our 
procedure, defining ul= --Kl(p,)y+ up. 

This procedure recalls the familiar method of steepest descent when minimizing a function 
of several variables numerically.Inthelattermethod, we firstfindthevectorgradientateachstep, 
then make a displacement in the corresponding direction until the "descent" occurs. 

3O. It can happen, however, that N-tuple repetition oftheprocedure leads to a linear 
object with control ulyV for which further use of the procedure is impossible, though its aim 
is not achieved. We then have to try to achieve our aim by extending the class of feedbacks, 
by introducing say feedbacksofthe type 

u = --K (p) y + I, (p) V, v' = RO + Sy, R = diag (rl, . ., rm) 

where ri<O is a fairly small number. 

(9) 

The introduction of feedbacks (controllers) of type (9) is equivalent to increasing the 
dimensionality of the initial control object. 

For, if we introduce new variables into the state vector and denote by X= col(z,u) the 
new state vector, the equation of the extended object can be written as 

If 9 = co1 (CZ, u)= FX, F= (C,E,) (E, is the m X m) identity matrix) denotes the extended 
object output vector, we arrive at the initial statement of the problem for it, i.e., we can 
use our theorem. 

4O. The theorem can be extended to infinite-dimensional dynamic systems with a character- 
istic polynomial which is a smooth function of p and of the feedback parameters in the 
neighbourhood of the roots. 

Proof of the theorem. We introduce the m x r dimensional space with orthonormalized 
basis vectors e~,e,,...,e,t. We shall regard kfj as the coordinates of a vector k in this space, 
i.e., kij is the projection of k onto the vector eN(i,j), N (I, j)= (i- 1)m-t j, i <i < r, 1 <i < m, i< 
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The n-th degree polynomial D,(~',li), whose coefficients depend on A-ij, defines a division 
of the space into domains D, II, n - 21 (1 =- 0, 1, . ., 10, in each of which the polynomial has I roots 
with negative real part and II -- I roots with positive real part. This division is called a 
D-division of the parameter space of the polynomial /5/. The boundary of the D-division is 
a hypersurface G,in the space, defined by the equation in parametric form 

P, (02, K) -- 0, wQs (02, K)=O,-co<<<<-cc (I(') 

where P,, 0, are given in (4). 
When m2 = us2 the surface passes through the origin. We take a sufficiently small 

neighbourhood of the surface at the origin, with 0% sufficiently close to os2. We denote by 

double shading /5/ the side of the piece of surface G,,adjacent to the domain D,[I,n--1 with 
the larger value of 1. Then, since the root a,&io, is simple, the other unshaded 
this piece of surface is adjacent to the domain D,12-2, n-Z+ 21. 

We introduce the tangent hyperplane at the origin to the piece of surface G,. 
(6), the equation of this hyperplane is 

side on 

By (5) and 

('1) 

We put 

N (i, j) = 1, . . ., mr 

Then, if A& + As'., -t + A&,,,. i 0, Eq.(ll) defines a hyperplane of co-dimension unity, 
the normal to it beingthevector 

N, L= +(*s,r> A's,?, . . ., *s,mJ (12) 

We choose the sign in (12) so that vector N, is directed towards the side with double 
shading, i.e., intothedomain D,12, n - 11 with the larger value of 1. 

To be specific, let 

We then consider the section A',, of the piece of hypersurface Gs by the hyperplane I?,, =- 
kl, k,z = kz. kij = 0, (i. i) Z (1, I), (1,2) of dimensionality two. The tangent line at the origin (the 
trace of the tangent hyperplane (11)) is described in the plane of the section by the equations 
(the subscript s is now omitted) 

PI&, + P&z + poAo2 = 0, qnkl + q,,k, + q&o2 = 0 (13) 

From (13) we have 

Denote by ylz the vector (A2/A12, -AJAla, O,...,O). By (13) and (14), it is the tangent vector 
(at the origin) to the section SI,, the direction of this vector being the same as the direction 
of increase of the parameter o2 in this section. We also carrier the vector N,, = + (A,, A,, 0, 

. .( 0). Obviously, N1, is the projection of the vector N onto the plane of section SI,, while 
(N,,, YIZ) = 0. 

Let A12>0. Then, on the piece of curve considered, the &* shading is on the left, if 
we move along this curve in the direction of increasing ma /5/. Hence, in the plane of the 
section, the shortest rotation from the vector yIa to the vector N,, must be counter clockwise, 
since it is then that the vector N,, (and hence N also) is directed towards the shading. 
Using vector multiplication and the expressions for ym,N,,, we can see that the vector N,, 
will satisfy this condition if we choose the plus sign. Hence the required direction of the 
vector N is obtained if we take the plus sign in (12). If L<O, similar arguments lead us 
to the same result. 

In short, if the vector of parameters satisfies the inequality tN,,k)>O (with the 
indicated choice of sign in the expression for NB). the vector k will be directed towards the 
shading. An conversely, if tN,, k)<O, it will be in the opposite direction. By the conditions 
of the theorem, in the first case, as p increases at the point p= 0, the eigenvalues a,+ctio, 
will shift "leftwards" in the complex plane, or in the second case, "rightwards." The theorem 
is proved. 
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ANALYTICAL SOLUTION OF A FLOW 
BOUNDARY LAYER SEPARAT 

PROBLEM IN THE NEIGHBOURHOOD OF THE 
ION POINT ON A MOVING SURFACE* 

An accurate solution to a previously formulated boundary value problem 
/l/ for the boundary layer (BL) equations describing flow in the neighbour- 
hood of the separation point on a moving surface is obtained. 
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V.V. SYCHEV 

The plane stationary flow of a viscous incompressible liquid in the neighbourhood of a 
release point on a surface which is moving downstream at a constant velocity is examined. As 
a result of the asymptotic analysis of the Navier-Stokes equations with large Reynolds 
numbers (R) it has been established /2/ that in the neighbourhood of the release point there 
is a region of interaction between the BL and the outer potential flow where a large un- 
favourable selfinduced pressure gradient is acting (the longitudinal and transverse dimensions 
of this region are quantities of the order of RdiS,see Fig.1). Upstream of this region, the 
flow is described by the BL equations; the pressure distribution outside this region is given 
(locally) by the solution of the theory of potential flows of an ideal liquid with free 
streamlines. The selfinduced pressure gradient leads to intense deceleration of the liquid 
inside the BL but does not cause flow separation, i.e. the appearance of a return flow in the 
interaction region /3/. 

Fig.1 

Subsequent analysis showed /l/ that the separation point must lie in a 
inside the BL, at a short distance upstream of the interaction region. The 
presentation of the solution of the Navier-Stokes equations (as R+m) for 
the form 

z = LA&, y = LA-"'I' 

9 = UmLR-"' [Y, + A&o (z', y') + . . .I 
P = pm + pUca* WPO (5’) + . . .I 

Aa = ,,‘&-‘h, o (In @)‘I. = &I*, R = L&,v 

region situated 
asymptotic 
this region take 

iq 
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